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Wake field in dielectric acceleration structures
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In this study we present a general approach for the analysis of the wake field of a point charge moving in a
vacuum tunnel bored in dielectric material that is uniform in the direction parallel to the motion of the bunch.
In the transverse direction the structure surrounding the dielectric may have arbitrary geometry. A quasianalytic
expression that relates the decelerating force with the first dielectric layer, the radius of the vacuum tunnel
where the charge moves, and the reflection characteristics of the structure has been developed. Simulation
results for a simple structure indicate that, if the effective location where the reflection occurs in the dielectric
is sufficiently apart from the edge of the vacuum tunnel, it has no effect on the point charge. In fact, the
decelerating field converges exponentially as this distance increases, to the asymptotic value determined by the
first dielectric layer. An estimate of the trailing wake when the structure supports a specific mode is also
provided.
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I. INTRODUCTION

One of the appealing paradigms for future particle acc
erators relies on dielectric slow-wave structures confinin
laser field. Conceptually, this is quite similar to today’s line
accelerators driven by microwave sources. Efforts are un
way @1# for a proof of principle at the level of the interactio
of electrons with a laser field in a single cell, but eventua
any practical accelerator will consist of a series of exten
slow-wave structures that need to satisfy several conditio
Beyond slowing down the phase velocity to the speed
light, it needs to ensure a maximum longitudinal elect
field at the location of the electrons for a given laser pow
minimize dissipation loss, and provide good heat trans
characteristics. Moreover, in order to avoid breakdown i
important to ensure minimum electric field at the vacuu
interface as well as in the dielectric, entailing a need
some trade-off between the latter and the need for maxim
power imposed by the maximum gradient condition. At t
high intensities involved, the laser field may affect the
electric coefficient of the structure~optical Kerr effect! thus
altering the wave’s phase relative to the accelerated bu
Finally, when a bunch is injected into a dielectric accele
tion structure, its deceleration ought to be as small as p
sible. It is the wake field that is responsible for this dece
ating field, and it is its analysis that is the focus of the curr
study.

Throughout the years extended studies of wake fie
have been conducted, many of which have been summar
in reviews by Heifets and Kheifets@2# and Chao@3#. How-
ever, the large majority of these studies address wake
azimuthally symmetric metallic disk-loaded structures
metallic cavities used in microwave accelerators which h
only limited relevance to optical dielectric structures. In t
study that follows, a general approach is being developed
estimation of the impact of a dielectric structure that is u
form in the direction parallel to the moving charge and h
virtually arbitrary characteristics in the transverse directio
1063-651X/2003/68~3!/036502~10!/$20.00 68 0365
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We present a quasianalytic expression that relates the d
erating force to the first dielectric layer of the structure, t
radius of the vacuum tunnel where the charge moves, and
reflection characteristics of the structure.

II. PRIMARY FIELD

Whatever structure surrounds the vacuum tunnel wh
the electron bunch propagates, it can be represented m
ematically by a matrix that relates the outgoing waves w
the incoming ones. The top frame of Fig. 1 illustrates t
conceptual configuration of a vacuum tunnel surrounded b
dielectric medium, and the reflecting structure is schem
cally represented by a ‘‘reflecting wall.’’ Two examples o
reflecting structures are illustrated at the bottom. The firs
a nonsymmetricstructure~bottom left frame! consisting of an
array of vacuum cylinders surrounding the central one; t
structure is better known as a photonic band gap~PBG!
structure~see Ref.@4#!. Another example is an azimuthall
symmetric Bragg structure~bottom right frame! consisting of
a series of concentric dielectric layers. Both structures
other variants have been investigated in the context of op
applications~e.g., @5,6#!; therefore, we shall skip here th
analysis of propagation of homogeneous waves and limit
discussion to the effect ofnonhomogeneouswaves linked to
the motion of a point charge in the central bore.

For this purpose we introduce a cylindrical coordina
system whosez axis coincides with the axis of the centr
vacuum tunnel. With this coordinate system it is possible
attribute to a chargeq moving at a constant velocityv par-
allel to the z axis and located in the transverse plane ar
5r 0 and f5f0 a current density Jz(r ,z,f,t)5
2qv(1/r )d(r 2r 0)d(f2f0)d(z2vt). In the absenceof
the dielectric structure this current density generates a~pri-
mary! field which satisfies the nonhomogeneous wave eq
tion
©2003 The American Physical Society02-1
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F¹22
1

c2

]2

]t2GAz
~p!~r ,z,f,t !52m0Jz~r ,z,f,t !. ~1!

Its solution can be expressed as

Az
~p!~r ,z,f,t !5E

2`

`

dv ej v~ t2z/v ! (
n52`

`

ejn~f2f0!an~r ,v!

~2!

with the amplitudean(r ,v) being a solution of the following
differential equation:

F1

r

d

dr
r

d

dr
2

n2

r 22
v2

c2

1

g2b2Gan~r ,v!5
qm0

~2p!2

d~r 2r 0!

r
.

~3!

The solution is

an~r ,v!52
qm0

~2p!2 H Kn~Gr !I n~Gr 0!, r .r 0 ,

I n~Gr !Kn~Gr 0!, r ,r 0 ,
~4!

with G[(uvu/c)(1/gb).
Subsequently, the solution of the electromagnetic prob

requires imposition of continuity of the tangential field com
ponents atr 5R.r 0 ; therefore the corresponding prima
components are presented next:

FIG. 1. Top: Schematic of the system under investigation
point charge (q) located atr 5r 0 andf5f0 moves parallel to the
z axis at a velocityv in a vacuum tunnel of radiusR. The latter is
surrounded by a dielectric structure that confines the electrom
netic mode. The confinement may be provided by a photonic b
gap structure~bottom left!, a Bragg structure~bottom right!, or
some other similar structure.
03650
m

S Ez
~p!

Ef
~p!

Hz
~p!

Hf
~p!

D 52
qm0

~2p!2 E
2`

`

dv ej v~ t2z/v ! (
n52`

`

ejn~f2f0!

3I n~Gr 0!S j v

g2b2 Kn~Gr !

j v

S v

c
r Db

Kn~Gr !

0

2G

m0
K̇n~Gr !

D . ~5!

The overdot represents the derivative with respect to the
gument of the function.

III. SECONDARY FIELD

This primary field is valid in the central vacuum tunnel
the structure in the absence of the surrounding structure.
latter’s effect on the field in this tunnel (r ,R) is referred to
as the secondary field and it is determined by two longitu
nal components of the electromagnetic~e.m.! field:

S Ez
~s!

Hz
~s!D 52

qm0

~2p!2 E
2`

`

dv ej v~ t2z/v ! (
n52`

`

ejn~f2f0!I n~Gr !

3S j v

g2b2 An

2G

m0g2b2 Bn

D , ~6!

whereas in the dielectric region (r .R), the secondary field
is given by

S Ez
~s!

Hz
~s!D 52

qm0

~2p!2 E
2`

`

dv ej v~ t2z/v ! (
n52`

`

ejn~f2f0!

3S j v

g2b2 @CnHn
~2!~Lr !1DnHn

~1!~Lr !#

L

m0g2b2 @EnHn
~2!~Lr !1FnHn

~1!~Lr !#
D .

~7!

Note that for v,0 the Hankel functions reverse role
Hn

(2)(u)→Hn
(1)(u) and Hn

(1)(u)→Hn
(2)(u); L

[(uvu/c)A« r2b22. If this first dielectric layer were infi-
nite, the amplitudes (Dn ,Fn) of the reflected waves would
vanish. The photonic band gap structure or the Bragg st
ture surrounding the vacuum tunnel or any other struct
that is attached to this dielectric layer causes a reflec
process that in principle may couple between the TM mo
represented byEz

(sec) and the TE mode represented byHz
(sec).

g-
d
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By virtue of the linearity of Maxwell’s equations the ampl
tudes of the reflected waves may be expressed in matrix f
~at r 5R and forv.0) as

S DnHn
~1!~LR!

FnHn
~1!~LR! D 5(

m
S Rnm

~11! Rnm
~12!

Rnm
~21! Rnm

~22!D S CmHm
~2!~LR!

EmHm
~2!~LR! D .

~8!

Explicitly, Rnm
(11) couples between the amplitudes of the

coming and outgoing TM waves, and similarlyRnm
(22) couples

between the amplitudes of the incoming and outgoing
wave. Since in principle azimuthal variations are possible
this structure due to either current excitation or geome
asymmetries these two modes are coupled. In the framew
of the present formulation this coupling is described by
two off-diagonal matrices: Rnm

(12) couples between the am
plitudes of the incoming TE mode and the outgoing amp
tudes of the TM wave. In a similar way,Rnm

(21) couples be-
tween the amplitudes of the incoming TM mode and
outgoing ones of the TE wave. For an azimuthally symme
structure and excitation the TE and TM modes are dec
pled, or explicitly R(12) and R(21) are identically zero. All
four matrices comprise all geometric and electrical proper
of the structure, and their characterization is essential
exact evaluation of the wake field. In the framework of t
present study, some general assumptions will be mad
account for the main features of the reflection process, a
lyzing their effect parametrically as well as based on a s
cific numerical calculation.

In order to determine the amplitudes introduced in E
~6! and ~7! it is necessary to establish an additional set
four equations—these are the boundary conditions for
tangential components of the field. With the longitudin
components it is possible, based on Maxwell’s equations
determine the other two tangential components in each of
regions, based on

Ēf5
n

b«̄~v/c!r
Ēz2

1

j v«0«̄

]H̄z

]r
,

H̄f5
n

b«̄~v/c!r
H̄z1

1

j vm0

« r

«̄

]Ēz

]r
;

tacitly assuming that the various field components have
spatial dependenceE;Ē(r )ej v(t2z/v)ejnf and «̄[« r
2b22. The explicit expressions for the azimuthal comp
nents of the electromagnetic field are presented in App
dix A.

IV. BOUNDARY CONDITIONS

By imposing the boundary conditions for thetotal tangen-
tial field components, it is possible to determine the as
unknown amplitudesAn , Bn , Cn , andEn . Starting with the
continuity of Ez , which entails
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Kn~GR!I n~Gr 0!1AnI n~GR!5CnHn
~2!~LR!1DnHn

~1!~LR!,

~9!

we proceed with the continuity ofHz leading to

01
2G

m0~gb!2 BnI n~GR!

5
L

m0~gb!2 @EnHn
~2!~LR!1FnHn

~1!~LR!#.

~10!

Further, continuity ofEf at r 5R provides us with a third
equation,

jn

b~R/c!
Kn~GR!I n~Gr 0!1 j vF 2n

b@~v/c!R#
AnI n~GR!

1
1

~gb!2 Bnİ n~GR!G
5

j v

~gb!2 H n

b@~v/c!R#«̄
@CnHn

~2!~LR!1DnHn
~1!~LR!#

1EnḢn
~2!~LR!1FnḢn

~1!~LR!J , ~11!

and finally continuity ofHf entails

2G

m0
K̇n~GR!I n~Gr 0!

1
G

m0
F n

b@~v/c!R#
BnI n~GR!2Anİ n~GR!G

5
L« r

m0~gb!2«̄ H n

@~v/c!R#b« r

3@EnHn
~2!~LR!1FnHn

~1!~LR!#

1CnḢn
~2!~LR!1DnḢn

~1!~LR!J . ~12!

At this stage it is convenient to adopt a matrix and vec
notation for the description of the solution prescribed by E
~9!–~12!. Defining V[vR/c, c[LR, x5GR, x05Gr 0 ,
Ān[AnI n(x), B̄n5BnI n(x), C̄n[CnHn

(2)(c), D̄n

[DnHn
(1)(c), Ēn[EnHn

(2)(c), and F̄n[FnHn
(1)(c), we

may write based on Eq.~9!

Ān5C̄n1D̄n2Kn~x!I n~x0!. ~13!

In a similar way, Eq.~10! may be rewritten as

B̄n52gbA«̄@Ēn1F̄n# ~14!

and based on Eq.~11!, after substituting Eqs.~13! and ~14!,

Mn
~11!C̄n1Mn

~12!D̄n1Mn
~13!Ēn1Mn

~14!F̄n5Sn
~1! , ~15!

wherein
2-3
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SCHÄCHTER, BYER, AND SIEMANN PHYSICAL REVIEW E68, 036502 ~2003!
Mn
~11!5Mn

~12![
n

bV S 11
1

«̄g2b2D ,

Mn
~13![

1

gb
A«̄

İ n~x!

I n~x!
1

1

~gb!2

Ḣn
~2!~c!

Hn
~2!~c!

,

Mn
~14![

1

gb
A«̄

İ n~x!

I n~x!
1

1

~gb!2

Ḣn
~1!~c!

Hn
~1!~c!

,

Sn
~1![

2n

Vb
Kn~x!I n~x0!.

Following a similar approach, Eq.~12! entails

Mn
~21!C̄n1Mn

~22!D̄n1Mn
~23!Ēn1Mn

~24!F̄n5Sn
~2! ~16!

after use of the following definitions:

Sn
~2![

I n~x0!

I n~x!

1

x
, Mn

~21![
« r

~gb!A«̄

Ḣn
~2!~c!

Hn
~2!~c!

1
İ n~x!

I n~x!
,

Mn
~22![

« r

~gb!A«̄

Ḣn
~1!~c!

Hn
~1!~c!

1
İ n~x!

I n~x!
,

Mn
~23!5Mn

~24![
n

Vb S gbA«̄1
1

gbA«̄
D .

Combining Eqs.~8!, ~15!, and ~16!, it is possible to formu-
late the solution of the electromagnetic problem in mat
form as

(
m

S Nnm
~11! Nnm

~12!

Nnm
~21! Nnm

~22!D S C̄m

Ēm
D 5S Sn

~1!

Sn
~2!D , ~17!

which in turn relies on the next set of definitions:

Nnm
~11![dnmMm

~11!1Mm
~12!Rnm

~11!1Mm
~14!Rnm

~21! ,

Nnm
~12![dnmMm

~13!1Mm
~12!Rnm

~12!1Mm
~14!Rnm

~22! ,

Nnm
~21![dnmMm

~21!1Mm
~22!Rnm

~11!1Mm
~24!Rnm

~21! ,

Nnm
~22![dnmMm

~23!1Mm
~22!Rnm

~12!1Mm
~24!Rnm

~22! .

Thus formally Eq.~17! may be conceived as the solution
the electromagnetic problem since, provided the reflec
matricesR introduced in Eq.~8! are known, the unknown
amplitudes are determined by inverting the matrixN.

V. EFFECT ON THE MOVING CHARGE

With the electromagnetic problem solved, it is possible
proceed toward determining the decelerating field on
point charge@Ez

(sec)#. For this purpose, it is sufficient to ca

culateĀn , which according to Eqs.~13! and ~17! reads
03650
n

o
e

AnI n~x!52Kn~x!I n~x0!

1$@ I 1R~11!#@N~11!2N~12!~N~22!!21N~21!#21

3@SW ~1!2N~12!~N~22!!21SW ~2!#

1R~12!@N~22!2N~21!~N~11!!21N~12!#21

3@SW ~2!2N~21!~N~11!!21SW ~1!#%n . ~18!

Explicitly, the decelerating power is given by

P5E
2p

p

dfE
0

R

dr r E
2`

`

dz Jz~r ,f,z,t !Ez
~s!~r ,R,f,z,t !

52qvE
2`

`

dv
j v

~gb!2 (
n52`

`

AnI n~x0!

[2qvEi ; ~19!

Ei denotes the decelerating field on the point charge. T
expression represents ageneral formulationof the decelerat-
ing field acting on a point charge as it moves along a cy
drical vacuum tunnel bored in a dielectric medium of rad
R. The reflecting structure outside the vacuum tunnel is r
resented by four reflection matricesR introduced in Eq.~8!.
It is worth mentioning that the term2Kn(x)I n(x0) in Eq.
~18! represents the self-field, since it is independent of
characteristics of the confining structure or the dielec
layer; therefore it has no contribution to the decelerat
power and only the term in the curly brackets may hav
nonzero contribution.

VI. DECELERATING FIELD

Although the formulation so far is general and accou
for any nonsymmetric structures, such as a photonic b
gap structure, for most practical purposes it may be assu
that the point charge is located on thez axis (r 050). This
assumption implies that only the zero harmonic has a n
zero contribution to the longitudinal field sinceI nÞ0(Gr 0
50)50. Furthermore, subject to this assumption and for
sake of simplicity, we shall limit the formulation develope
so far to anazimuthally symmetriccase such as a Brag
structure or the contribution of the zero harmonic in a ph
tonic band gap structure; subsequently we shall briefly d
cuss the contribution of nonsymmetric structures.

First, the expressions will be simplified to fit then50
case and the ultrarelativistic regime (g→`), i.e.,x!1. Sec-
ond, sinceg@1, it is assumed that the main contribution
the field is from high frequencies; thusc@1. Third, the ma-
trices that couple the TM and TE modes vanish for the sy
metric case, i.e.,R(12)50 and R(21)50. Consequently, the
first set of matrices introduced@Eq. ~15!# are given by

M0
~11!5M0

~12!50, M0
~13!.

1

g
A«̄

x

2
2

j

g2 ,

M0
~14!.

1

g
A«̄

x

2
1

j

g2 ,
2-4
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whereas the second set reads

M0
~21!.

2 j « r

gA«̄
1

x

2
, M0

~22!.
j « r

gA«̄
1

x

2
,

M0
~23!5M0

~24!50.

For the zero harmonic, the source term of the TE mode
zero,S0

(1)50. Correspondingly, the source of the TM mo
is S0

(2)5(1/x)@ I 0(x0)/I 0(x)#.1/x. These results imply tha
two of the N matrices are zero,N(11)50 and N(22)50,
whereas the other two read

N~12!5
1

g
A«̄

x

2
2

j

g2 1S 1

g
A«̄

x

2
1

j

g2DR~22!,

N~21!52
j « r

gA«̄
1

1

2
x1S j « r

gA«̄
1

1

2
x DR~11!.

Since the source term of the TE mode is zero,S0
(1)50, and

there is no coupling between TE and TM modes in the sy
metric case, the former vanishes (Ēn50)—as one may ex-
pect. As a result, the amplitude of the TM mode is det
mined by

C̄05@N0
~21!#21S0

~2!

5F2
j « r

gA«̄
1

1

2
x1S j « r

gA«̄
1

1

2
x DR~11!G21

1

x
;

thus, after definingv̄[ 1
2 xgA«̄/« r5VA«̄/2« r , the effect of

the reflection process is revealed in the explicit express
for the decelerating field,

Ei5
q

4p«0R2

2

p E
2`

`

dv̄
11R~11!~ v̄ !

11 j v̄2~12 j v̄ !R~11!~ v̄ !
.

~20!

It warrants mention that ifc@1 is not satisfied then

Ei5
q

4p«0R2

2

p E
2`

`

dv̄
11R~11!~ v̄ !

k1 j v̄2~k* 2 j v̄ !R~11!~ v̄ !
,

~21!

wherein k(v̄)[2 jH 1
(2)(2«v̄)/H0

(2)(2«v̄). After the gen-
eral formulation for the decelerating field as presented
Eqs.~18! and~19!, the expression in Eqs.~20! or ~21! is the
next most important result of this study. Its importance i
direct consequence of the possibility of establishing the w
in a structure based on a prior calculation of the reflect
coefficient@R(11)#. This calculation can be either numerica
e.g., based onHFSSor MAFIA , or analytic, on which we shal
focus in what follows.
03650
is

-

-

n

n

a
e
n

Case 1

In the absence of reflections, i.e.,R(11)50,

Ei5
q

4p«0R2 3
4

p E
0

`

dv̄
1

11v̄2 5
q

4p«0R2 32, ~22!

which is identical to the result reported in Ref.@7#.

Case 2

Another insight is disclosed by defining the normaliz
impedance asZ̄in[(11R(11))/(12R(11)). It allows formula-
tion of the decelerating field in terms of the impedance
perienced by the wave propagating outward, namely,

Ei5
q

4p«0R2
3

2

p
E

2`

`

dv̄
Z̄in

11 j v̄Z̄in

5
q

4p«0R2
32.

~23!

If this impedance happens to be frequency independent
has zero imaginary component, the deceleration field is
dependent of its exact value. However, the situation is
ferent when the impedance has resonances.

Case 3

In order to account for the effect of reflections, conside
perfect reflector that imposesEz(r 5Rext.R)50, for which
the reflection coefficient is

R~11!52
H0

~2!~LRext!

H0
~1!~LRext!

H0
~1!~LR!

H0
~2!~LR!

.2e22 j v̄dr , ~24!

wherein for the expression in the right-hand side it is tac
assumed thatLR@1 anddr[2« r(Rext2R)/R; this last pa-
rameter represents the normalized distance where reflec
occur. In Appendix B it is demonstrated that, regardless
the value ofdR, the decelerating field on the point charge
identical to the case when no reflection occurs—i.e.,
~22!. In other words, a~Čerenkov! wave emitted by the
charge and being reflected by the discontinuity reaches
axis after the point charge has passed there and, as a r
the bunch is not affected by the discontinuityat r 5Rext.

Case 4

It is a well known fact that perfect reflection from th
‘‘ideal wall’’ leads to an infinite number of modes@8#. Ac-
cordingly, it is possible to account for the effects of a stru
ture that supports asingle mode, as in the case of a highly
symmetric photonic band gap structure, by ‘‘filtering’’ out a
the modes except one. Based on this metallic wall mo
this filtering process may be understood in terms of havin
wall made of a frequency-dependent metal. The reflect
coefficient in this case may be assumed to be given
R(11).2r(v̄)e22 j v̄dr wherein

r~v̄!.r0

e2@~v̄2v̄0!/dv#2
1e2@~v̄1v̄0!/dv#2

11e2~2v̄0 /dv!2 , ~25!
2-5
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FIG. 2. The normalized decel
erating fieldEi(q/4p«0R2)21, as
a function of the normalized dis
tance where reflections occur,dr
52« r(Rext2R)/R ~left column!.
In the right column, the same
quantity is plotted as a function
of normalized frequency v̄
5(v0 /c)R(1/2« r)A« r21; dv
5(Dv/c)R(1/2« r)A« r21 is the
bandwidth of the reflection.
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r(v̄) being a real defined function whose maximum value
r0 , which occurs atuv̄u5v̄0 , and the width of the peak
being dv. Further assuming thatr(v̄) is relatively narrow,
i.e., v̄0@dv, we get

Ei.
q

4p«0R2 3H 21
4

p E
v̄023dv

v̄013dv
dv̄ Re

3F 11R~11!

11 j v̄2~12 j v̄ !R~11!2
1

11 j v̄G J ; ~26!

note that the integration is limited to six times the bandwid
of the reflection coefficient because of the exponential de
associated with it. This integral can be evaluated numeric
~Fig. 2!, illustrating the dependence of the normalized dec
erating field@ Ēi[Ei /(q/4p«0R2)# on the four main param
eters of the model:~i! the maximum reflection coefficien
03650
s

y
ly
l-

(r0), ~ii ! the normalized resonance frequency of t
reflecting wall @v̄0[(v0 /c)RA« r21(1/2« r)#, ~iii ! the
reflection bandwidth of the structure @dv
[(Dv0 /c)RA« r21(1/2« r)#, and ~iv! the normalized dis-
tance where the reflection occurs$dr 5@(Rext2R)/R#2« r%.
All three frames in the left column show that the effect
reflections~from r 5Rext) on the point charge diminishes a
the separation parameterdr increases. In fact, all three
frames demonstrate that the normalized fielddecays expo-
nentially to its asymptotic value@see Eq.~21!# as a function
of this parameter. This may be understood in terms of
time it takes the photon emitted by the point charge to re
the reflecting surface. The further away this surface is,
lower the probability becomes that the reflected photon a
back on the particle. A similar, but not as pronounced,
havior is revealed by the frames in the right column whi
illustrate the normalized field as a function of normaliz
2-6
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resonant frequency (v̄0) of the reflecting structure. In othe
words, for most practical cases if (Rext2R)/R>2/« r the de-
celerating field~and thus the wake! is independentof the
geometric or electric properties of the reflecting structure
is given by Ei5(q/4p«0R2)32—as already indicated in
case 3.

Focusing next on frames~a! and ~b!, we observe that the
bandwidth of the reflecting structure has a very strong imp
if dr is relatively small. When the bandwidth is muc
smaller than the resonant frequency~or in normalized units
dv!v̄0), then the point charge may experience a decele
ing field that is 10% larger than in the absence of reflectio
Regardless of the value of the bandwidth, for sufficien
large dr and v̄0 the decelerating field decays to i
asymptotic value; in all these casesr051. Frames~c! and~d!
reveal the oscillatory as well as the decaying character of
decelerating field; for most practical purposes, the contri
tion seems to be limited to less than 10%. This conclusio
valid also whendr is a parameter, except if the latter
relatively small@(Rext2R)/R<1/2« r #, in which case the de
celerating field may be larger by more than 15% compare
the asymptotic value.

Frames~e! and ~f! reveal the impact of the reflection co
efficient on the decelerating field. It is evident thatr0 has no
effect on the oscillation’s frequency but it affects its amp
tude quite significantly. The maximum effect occurs wh
the reflection coefficient is unity; however, there is a sign
cant effect even if there is only partial reflection. In oth
words, even if the structure does not support the propaga
of a mode synchronous with a relativistic particle, there i
non-negligible effect of the reflecting structure on a movi
point charge. For the parameters presented here (dv50.5
and v̄053 or dr 53) the variation is less than 2%.

Case 5

Another topic that needs to be addressed is the impac
the wake generated by a single bunch on trailing bunch
For this purpose one needs to go back to Eq.~20! and rewrite
it including the corresponding delay term, namely,

Ei~t5t2z/v !

5
q

4p«0R2

2

p E
2`

`

dv̄
11R~11!~ v̄ !

11 j v̄2~12 j v̄ !R~11!~ v̄ !
ej v̄t/t0,

~27!

whereint05(R/c)(1/2« r)A« r21. As before, it is straight-
forward to evaluate the wake in the absence of reflec
(R(11)50), and it reads@9#

Ei~t!5
q

4p«0R2 3 f ~t![
q

4p«0R2 3H 0, t,0,

2, t50,

4e2t/t0, t.0.
~28!
03650
d

ct
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n

If the structure supports an infinite number of modes, the
point charge injected in the system excites a~discrete! spec-
trum of angular frequencies (vs). The wake trailing behind
the bunchon axisis then given by

Ei~t!5
q

4p«0R2 3(
s51

`

as cos~vst!, ~29!

where as.(2v1/2p)*0
2p/v1dt f(t)cos(vst)—tacitly assum-

ing thatv1t0!1. In any event, the first eigenfrequency h
to correspond to the wavelength of the driving laser fie
moreover, the dielectric material making up the optical a
celeration structure is frequency dependent and therefore
practice, only a few modes are supported. Consequently
particular interest is the case when only thefirst mode is
supported, implying a field on axis of

Ei~t!.
q

4p«0R2 3
2

p

2~l/R!~p/« r !A« r21

11@~l/R!~p/« r !A« r21#2

3cosS 2p
ct

l D ; ~30!

it may be readily checked that the amplitude has a maxim
if ( l/R)(p/« r)A« r2151, further implying

E i
~max!~t !.

q

4p«0R2

2

p
cosS 2p

ct

l D . ~31!

Ignoring the asymmetric character of a photonic band g
structure, this last analytic result gives a reasonable estim
of the wake trailing behind the point charge in any photo
band gap structure that is uniform in thez direction.

Case 6

As already indicated, the importance of Eq.~20! stems
from its ability to harness numerical calculations using e
software packages such asHFSSor MAFIA to determineR(11)

and evaluate the wake of complex structures. In order
demonstrate this feature, we shall consider the reflection
efficient @R(11)# of a hollow fiber based on a Bragg structu
analyzed in detail elsewhere. Its absolute value is prese
in Fig. 3 as a function of the~normalized! frequency for 50
interchanging dielectric layers («152.1,«254) and an inter-
nal radius that is half the wavelength of the accelerat
mode (R50.5l0). Although for a large fraction of the spec
trum waves are transmitted through the Bragg structu
there are narrow sections where almost complete reflec
occurs, the width of these regions being inversely prop
tional to the number of layers of the Bragg structure.
2-7
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Consider now a macrobunch consisting ofM uniform mi-
crobunches of widtha ~,2p! and separated by one wav
length (l0). Based on Eq.~27!, it may be readily shown tha
the electromagnetic power generated by such a macrob
is given by

P5
2vQ2

4p«0R2

2

p E
2`

`

dv̄
11R11~v̄ !

k1 j v̄2~k* 2 j v̄ !R11~v̄ !

3sinc2S a

2

v̄

v̄0
D sinc2@pM ~v̄/v̄0!#

sinc2@p~v̄/v̄0!#
, ~32!

where sinc(x)[sin(x)/x, andv̄0[2p(R/l0)A«21/(2«).
A numerical evaluation of Eq.~32! is presented in Fig. 4

for Bragg structures of several numbers of layers:N0510,
20, 30, and 40. It shows that in case of better confinem
~larger N0) the normalized emitted power is more mode
ately dependent on the number of bunches. Here is the p
to mention that the frequency integral was performed up
v̄550v̄0 , since if l0.1 mm then at wavelengths shorte
than 30 nm the dielectric properties of the material
strongly dependent on the frequency, and for all pract
purposes it becomes transparent—in other words, the co
bution to the decelerating field virtually vanishes.

Case 7

Before we conclude, a comment on nonsymmetric str
tures is appropriate. If the point charge is on axis and
structure isnonsymmetric, the decelerating force is expecte
to have a form similar to Eq.~20! or Eq.~21!. The reflection
coefficient includes not only the reflection coefficientR(11)

that couples between outgoing and incoming zero harmo
of the TM mode, but also coupling from the zero harmonic
nonzero harmonics and back to the zero harmonic, i.e.,

FIG. 3. Absolute value of reflection coefficient as a function
the normalized frequencyv/v0 .
03650
ch

nt

ce
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e
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R0,0
~11!→R~11!5R0,0

~11!1 (
n,m52`

`

O0,n
~1!On,m

~2! Om,0
~3! , ~33!

whereO(1), O(2), andO(3) are three operators that depen
on the matricesN. The effect of reflections due to nonsym
metric modes that couple through the structure is not
pected to be significantly different from the one discuss
above for the zero harmonic. Obviously, the effective loc
tion of the reflection (dr ) may be different, and so is th
resonant frequency (v̄0) of the maximum reflection structur
(r0) as well as its bandwidth~dv!. Clearly, the reflection
coefficient R(11) for complex structures can be calculate
based only on numerical methods and/or commercially av
able software packages. With it, the decelerating field, or
power, can be readily evaluated using Eq.~20! or Eq. ~32!,
respectively.

VII. SUMMARY

In conclusion, a general approach was developed enab
us to estimate the impact of a dielectric structure that is u
form in the direction parallel to the moving charge and h
virtually arbitrary characteristics in the transverse directio
A quasianalytic expression that relates the decelerating fo
to the first dielectric layer, the radius of the vacuum tunn
where the charge moves, and the reflection characteristic
the structure has been developed. The simulation results
dicate that, if the effective location where the reflection o
curs in the dielectric is sufficiently apart from the edge of t
vacuum tunnel, it has no effect on the point charge. In fa
the decelerating field converges exponentially to
asymptotic value set by the first layer of dielectric materi
An analytic estimate@Eq. ~31!# of the trailing wake has been
provided for the case when the electromagnetic struc
~e.g., photonic band gap! supports only one mode.

FIG. 4. Normalized power generated by a train ofM11 mi-
crobunches: exact calculation forN510, 20, 30, 40; hereRint

50.3l0 , « I52.1, « II54.0.

f
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APPENDIX A

The azimuthal components of the secondary field in
vacuum tunnel (r ,R) are given by
th

,

-
a

th
iu
do

03650
a-
d

e

S Ef
~s!

Hf
~s!D 52

qm0

~2p!2 E
2`

`

dv ej v~ t2z/v !(
n

ejn~f2f0!

3S 2
j vn

b@~v/c!r #
AnI n~Gr !1

j v

~gb!2 Bnİ n~Gr !

n

b@~v/c!r #

G

m0
BnI n~Gr !2

G

m0
Anİ n~Gr !

D .

~A1!

Outside the vacuum tunnel (r>R), the azimuthal field com-
ponents are
S Ef
~s!

Hf
~s!D 52

qm0

~2p!2 E dv ej v~ t2z/v !(
n

ejn~f2f0!

3S j v

~gb!2 H n

@~v/c!r #b«̄
@CnHn

~2!~Lr !1DnHn
~1!~Lr !#1EnḢn

~2!~Lr !1FnḢn
~1!~Lr !J

L« r

m0~gb!2«̄ H n

@~v/c!r #b« r
@EnHn

~2!~Lr !1FnHn
~1!~Lr !#1CnḢn

~2!~Lr !1DnḢn
~1!~Lr !J D . ~A2!
um

ing

te-
APPENDIX B

The wake generated by a point charge on the axis of
structure is given by

Ei~ t̄ !5
Q

4p«0R2 F 2

p E
2`

`

dv̄

3
1

@12R~11!~ v̄ !#/@11R~11!~ v̄ !#1 j v̄
ej vtG ,

~B1!

where t̄5(t2z/c)(c/R)(2«)/A«21. In the denominator
we identify the effective~normalized! impedance of the

wave Z̄in5(11R(11))/(12R(11)). To demonstrate our state
ment in the context of Eq.~20!, it is convenient to assume
single discontinuity at a distanceD5Rext2R from the
vacuum-dielectric interface, and the main contribution to
integral is from wavelengths smaller than the internal rad
of the structure. Thus, for the transverse impedance we a
a transmission line model

Z̄eff5
Z2 /Z11 j tan@~v/c!DA«121#

11 j ~Z2 /Z1!tan@~v/c!DA«121#
, ~B2!

representing a wave that propagates at a velocityv.c along
e

e
s
pt

the z direction, whereas the wave impedance in the medi
may be shown to be given byZn5h0A«n21/«n with n
51,2. Hence

E~ t̄ !5
Q

4p«0R2 F 2

p
E

2`

`

dv
ej vt

11 j v̄

3
11re22 j vtD

12r~12 j v̄ !/~11 j v̄ !e22 j vtD
G , ~B3!

whereint̄D[(D/R)2« andr5(Z22Z1)/(Z21Z1), which is
frequency independent. With this observation and employ
the explicit expression for a geometric series, we have

E~ t̄ !5
Q

4p«0R2

3H (
n50

`

rn
2

p E
2`

`

dv ej v̄~ t̄22nt̄D!
~12 j v̄ !n

~11 j v̄ !n11

1 (
n50

`

rn11
2

p E
2`

`

dv̄ ej v̄@ t̄22~n11!t̄D#
~12 j v̄ !n11

~11 j v̄ !n12 J ,

~B4!

enabling us to determine an analytic expression for the in
grals from the above:
2-9
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G~ t̄ !5
2

p E
2`

`

dv̄ ej v̄~ t̄22mt̄D!
~12 j v̄ !m

~11 j v̄ !m11

5
~21!m

m!

2

p H dm

dam E
2`

`

dv̄ ej v̄~ t̄22mt̄D!
~12 j v̄ !m

a1 j v̄ J
5

~21!m

m!
4H dm

dam

1

2p j E2`

`

dv̄ ej v̄~ t̄22mt̄D!

3
~12 j v̄ !m

v̄2 ja J
a51

. ~B5!

The integral in the curly brackets can be evaluated us
Cauchy’s residue theorem, definingum[t̄22mt̄D ,

Fm~um![
1

2p j E2`

`

dv̄ ej v̄um
~12 j v̄ !m

v̄2 ja

5e2aum~11a!mh~um!, ~B6!

whereinh(x) is the Heaviside step function. Consequentl
l.

9

h

d

03650
g

E~ t̄ !5
Q

4p«0R2 3H 4(
n50

`

rnh~ t̄22nt̄D!
~21!n

n!

3F dn

dan e2a~ t̄22nt̄D!~11a!nG
a51

14(
n50

`

rn11h@ t̄22~n11!t̄D#
~21!n11

~n11!!

3F dn11

dan11 e2a@ t̄22~n11!t̄D#~11a!n11G
a51

J .

~B7!

The Heaviside step functions in this expression clearly rev
that the first contribution of thediscontinuityon the moving
point charge occurs with a delay 2(D/c)A«21; therefore, at
t50, the decelerating field is determined only by t
vacuum-dielectric discontinuity.
nd

D.
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