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In this study we present a general approach for the analysis of the wake field of a point charge moving in a
vacuum tunnel bored in dielectric material that is uniform in the direction parallel to the motion of the bunch.
In the transverse direction the structure surrounding the dielectric may have arbitrary geometry. A quasianalytic
expression that relates the decelerating force with the first dielectric layer, the radius of the vacuum tunnel
where the charge moves, and the reflection characteristics of the structure has been developed. Simulation
results for a simple structure indicate that, if the effective location where the reflection occurs in the dielectric
is sufficiently apart from the edge of the vacuum tunnel, it has no effect on the point charge. In fact, the
decelerating field converges exponentially as this distance increases, to the asymptotic value determined by the
first dielectric layer. An estimate of the trailing wake when the structure supports a specific mode is also
provided.
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[. INTRODUCTION We present a quasianalytic expression that relates the decel-
erating force to the first dielectric layer of the structure, the
One of the appealing paradigms for future particle accelradius of the vacuum tunnel where the charge moves, and the
erators relies on dielectric slow-wave structures confining aeflection characteristics of the structure.
laser field. Conceptually, this is quite similar to today’s linear
accelerators driven by microwave sources. Efforts are under
way [1] for a proof of principle at the level of the interaction Il. PRIMARY FEIELD
of electrons with a laser field in a single cell, but eventually
any practical accelerator will consist of a series of extended Whatever structure surrounds the vacuum tunnel where
slow-wave structures that need to satisfy several conditiondhe electron bunch propagates, it can be represented math-
Beyond slowing down the phase velocity to the speed ofmatically by a matrix that relates the outgoing waves with
light, it needs to ensure a maximum longitudinal electricthe incoming ones. The top frame of Fig. 1 illustrates the
field at the location of the electrons for a given laser powerconceptual configuration of a vacuum tunnel surrounded by a
minimize dissipation loss, and provide good heat transfedielectric medium, and the reflecting structure is schemati-
characteristics. Moreover, in order to avoid breakdown it iscally represented by a “reflecting wall.” Two examples of
important to ensure minimum electric field at the vacuumreflecting structures are illustrated at the bottom. The first is
interface as well as in the dielectric, entailing a need fOI‘anonsymmetri(structure(bottom left frame consisting of an
some trade-off between the latter and the need for maximurgrray of vacuum cylinders surrounding the central one; this
power imposed by the maximum gradient condition. At theStructure is better known as a photonic band QBBG)
high i_ntensiti_es involved, the laser f_ield may affect the di'structure(see Ref[4]). Another example is an azimuthally
electric coefficient of the structur@ptical Kerr effect thus symmetric Bragg structur@ottom right framg consisting of

altering the wave's phase relative to the accelerated bunchy series of concentric dielectric layers. Both structures and

Finally, when a bunch is injected into a dielectric alCC‘:"lera'other variants have been investigated in the context of optics

tion structure, its deceleration ought to be as small as pos: . . . . . ;
sible. It is the wake field that is responsible for this decelefappllcatlons(e.g., [5,6); therefore, we shall skip here the

ating field, and it is its analysis that is the focus of the currenfal_nalyﬂs_ of propagation of homogeneous waves z_and limit the
study. discussion to the effect afonhomogeneousaves linked to

Throughout the years extended studies of wake field§he mot|o-n of a point cha_rge in the centrfal bpre. .
have been conducted, many of which have been summarized FO7 this purpose we introduce a cylindrical coordinate
in reviews by Heifets and Kheifef®] and Chad3]. How- system whose axis COI.nCIdeS wlth the axis .of. the ce_ntral
ever, the large majority of these studies address wakes HRCUUM tunnel. With this poordlnate system it is _possmle to
azimuthally symmetric metallic disk-loaded structures orattribute to a chargeg moving at a constant velocity par-
metallic cavities used in microwave accelerators which havéllel to thez axis and located in the transverse plane at
only limited relevance to optical dielectric structures. In the=ro and ¢=¢, a current density J,(r,z,¢,t)=
study that follows, a general approach is being developed for- qu(1/r) 8(r —rg) 8(¢p— ¢o) 8(z—vt). In the absenceof
estimation of the impact of a dielectric structure that is uni-the dielectric structure this current density generatégria
form in the direction parallel to the moving charge and hasmary) field which satisfies the nonhomogeneous wave equa-
virtually arbitrary characteristics in the transverse directionstion
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Photonic Crystal Bragg Structure
Ill. SECONDARY FIELD
FIG. 1. Top: Schematic of the system under investigation. A

point charge ) located atr =r, and ¢= ¢, moves parallel to the This primary field is valid in the central vacuum tunnel of

z axis at a velocity in a vacuum tunnel of radiuR. The latter is  the structure in the absence of the surrounding structure. The
surrounded by a dielectric structure that confines the electromadatter’s effect on the field in this tunnef €R) is referred to
netic mode. The confinement may be provided by a photonic bands the secondary field and it is determined by two longitudi-
gap structure(bottom lef), a Bragg structurgbottom righy, or  nal components of the electromagneiicm) field:

some other similar structure.

EyY Quo [~
52 H%S)) =— 2n? ). dwe""(t Z/v)nzx en@=¢| (T'r)
[VZ 2 }A”’(r z,$,1)=—pod(r,z,,t). (1) ’
jw
S
Its solution can be expressed as . , (6)
———B
. - poyBe "
Aé’”(r,z,(b,t):f dw et > e (r,0) _ S _
—o n=—o whereas in the dielectric regiom ¥ R), the secondary field
(20 is given by
vv_ith the_amplitud_enn(r,w) being a solution of the following EYY __ Q% [~ do el @(t-2) i Qin(d- o)
differential equation: HS (2m)? ) . N
jw
1d d n® o 1] - O r=ro) 22 [CoHP (AN + D H(AD)]
rdrodr 2 2 2| 2m2 T 1 <« 7
® L[E HZ(Ar)+FHP(Ar)]
MO,}/ZBZ n''n n'n
The solution is 7
Note that for v<O the Hankel functions reverse roles
(I')l,(T'rg), r>rg, ’
anir)== ot L @ HPW—HPW  and  HP@—HPW: A
(2m)= [1a(I'T)K(I'ro),  r<ro, =(|w|/c) Ve, — B~ 2. If this first dielectric layer were infi-
nite, the amplitudes, ,F,) of the reflected waves would
with I'=(|w|/c)(1/yB). vanish. The photonic band gap structure or the Bragg struc-

Subsequently, the solution of the electromagnetic problenture surrounding the vacuum tunnel or any other structure
requires imposition of continuity of the tangential field com- that is attached to this dielectric layer causes a reflection
ponents atr =R>r; therefore the corresponding primary process that in principle may couple between the TM mode
components are presented next: represented b **® and the TE mode represented i)

036502-2



WAKE FIELD IN DIELECTRIC ACCELERATION STRUCTURES PHYSICAL REVIEW B8, 036502 (2003

By virtue of the linearity of Maxwell's equations the ampli- K (T'R)I (I'rg)+A,l WTR)=CHP(AR)+DHP(AR),
tudes of the reflected waves may be expressed in matrix form )
(atr=R and forw>0) as

we proceed with the continuity dfl, leading to

(Danl)(AR))_2 (Rﬁln? R (CmHﬁﬁ)(AR)) 0+ —L B (IR
1 = 2 '
FoHPAR) ) ™4 (R R EHP(AR) wolyB)2 "
8
= — S [EsHP(AR)+F HP(AR)].
Explicitly, R(}Y couples between the amplitudes of the in- #o(7B)
coming and outgoing TM waves, and similait? couples (10

between the amplitudes of the incoming and outgoing TE o ) ) ,
wave. Since in principle azimuthal variations are possible i Urther, continuity ofe,, atr=R provides us with a third
this structure due to either current excitation or geometric¢auation,

asymmetries these two modes are coupled. In the framework

. i S ) jn . -n
of the present formulation this coupling is described by the —— K (I'R)I .(I'ro) + jw| ———————— Al ('R
two off-diagonal matrices: R{*? couples between the am- B(Ric) (TR (ro ) Bl(wlc)R]"T (R
plitudes of the incoming TE mode and the outgoing ampli- )
tudes of the TM wave. In a similar waf'z> couples be- + WBM(FR)
tween the amplitudes of the incoming TM mode and the Y
outgoing ones of the TE wave. For an azimuthally symmetric jw n @ 1
structure and excitation the TE and TM modes are decou- = (52 ﬁ[(w/c)R]E[C”H” (AR)+DyH; " (AR)]
pled, or explicitty R*? and R(?? are identically zero. All
four matrices comprise all geometric and electrical properties . .
of the structure, gnd thei? characterization is essl?en?ial for +EHHEZ)(AR)+FHH31)(AR)]' (11)

exact evaluation of the wake field. In the framework of the
present study, some general assumptions will be made tand finally continuity ofH , entails
account for the main features of the reflection process, ana-
lyzing their effect parametrically as well as based on a spe- -
i . : KW(TR) I 4(T'rg)

cific numerical calculation. 0

In order to determine the amplitudes introduced in Egs.
(6) and (7) it is necessary to establish an additional set of + L
four equations—these are the boundary conditions for the Mo
tangential components of the field. With the longitudinal A
components it is possible, based on Maxwell's equations, to — Er [ n
determine the other two tangential components in each of the mo(¥B)%e | [(w/c)R]Bs,

regions, based on X[E.HP(AR) +FHY(AR)]

msnwm—mn(m)}

E n E 1 aﬁz
¢ Be(wlc)r 2 jwege dr

+an§,2>(AR)+DnH<n1>(AR)]. (12

At this stage it is convenient to adopt a matrix and vector

= n = 1 e aEZ' notation for tpe_desgrlption of thS /s\olution prescribed by Egs.
4= Batwlo)r N2 jw,uo;_W’ (_9):(12). Defining ¢ =wR/c, Y= —R'_X_F(S' xo=Iro,
An=Anln(X), Bn=Bnln(x), Ch=CyH (¥), Dy

= (1) E = (2) E = (1)
tacitly assuming that the various field components have the_D"Hn (), En=EqHi (), and Fr=F,H"(y), we

. — - — may write based on Ed9
spatial dependenceE~E(r)el“(t"#v)einé  and e=¢, y d9)

— B2 The explicit expressions for the azimuthal compo- A,=C,+D,— KO x0)- (13)
nents of the electromagnetic field are presented in Appen- noTne T emAn
dix A. In a similar way, Eq(10) may be rewritten as

By=—yB Vel EqtFyl (14)

IV. BOUNDARY CONDITIONS

By imposing the boundary conditions for ttetal tangen- and based on Eq11), after substituting Eqe13) and (14),

tial field components, it is possible to determine the as yet MIVC, +MI2D, + MIIE, + MIYF =SV (15
unknown amplitudeg,,, B,, C,, andE,,. Starting with the
continuity of E,, which entails wherein
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%”EQ—';K@()I”(XO).

Following a similar approach, E¢12) entails
M(VC, + M 22D, + MPE, + M2YF, =52 (16)

after use of the following definitions:

n a(x)

(X))’

@ HP ()
" (yB)Ve HY(#)

H® () N In(x)
(yB)VE HP(9)  1a(x)’

_ In(XO) E
() X’

Er

2
s(n)

(2__ °r
n

n 1
M(23):M(24)E_ fp & )
o QB(YB ”*yﬁﬁ%

Combining Egs(8), (15), and(16), it is possible to formu-
late the solution of the electromagnetic problem in matrix

- ()

which in turn relies on the next set of definitions:

-

En

11 12
Nom' Nom

21 (22
Ngm) Nnm)

1
S

2 SﬁZ)

m

7

11) 11 12 11 14 21
Ngm)=5an$n )+M$’n )Rgm)'}_MSn )Rgm)'
(22)
nm 1

N2 =g M4 M(IDR12 4 (19
21) _ 21 22 11 24 21
Ngm)=5an$n )+M$’n )Rgm)'}_MSn )Rgm)v

N2 =g

nm

23 22)p (12 24 (22
M+ MR MR,
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Anln(x)=—K,(X)h(x0)
+{[1+ RV NAY - N(12(N(22) -1 (2] -2

X [§1 - N12(N(22)-1§2)]
+R(12)[N(22)_ N(Zl)(N(ll))—lN(12)]—l

X[S®—NEIN) IS, (18)

Explicitly, the decelerating power is given by

T R 0
= (s)
P ffwddjfo drrﬁwdz J(r,¢,2,H) E;7 (r <R, ¢,z,1)

ol e s
= qvjxdwwn_Ew Anln(xo)

=—- qU EH X (19)

& denotes the decelerating field on the point charge. This
expression representgyaneral formulatiorof the decelerat-
ing field acting on a point charge as it moves along a cylin-
drical vacuum tunnel bored in a dielectric medium of radius
R. The reflecting structure outside the vacuum tunnel is rep-
resented by four reflection matric&sintroduced in Eq(8).

It is worth mentioning that the term- K, (x)!1.(xo) in Eq.

(18) represents the self-field, since it is independent of the
characteristics of the confining structure or the dielectric
layer; therefore it has no contribution to the decelerating
power and only the term in the curly brackets may have a
nonzero contribution.

VI. DECELERATING FIELD

Although the formulation so far is general and accounts
for any nonsymmetric structures, such as a photonic band
gap structure, for most practical purposes it may be assumed
that the point charge is located on thexis (r;=0). This
assumption implies that only the zero harmonic has a non-
zero contribution to the longitudinal field sindg.q(I'rq
=0)=0. Furthermore, subject to this assumption and for the
sake of simplicity, we shall limit the formulation developed
so far to anazimuthally symmetricase such as a Bragg
structure or the contribution of the zero harmonic in a pho-
tonic band gap structure; subsequently we shall briefly dis-
cuss the contribution of nonsymmetric structures.

First, the expressions will be simplified to fit thre=0
case and the ultrarelativistic regimg-G ), i.e., x<1. Sec-

Thus formally Eq.(17) may be conceived as the solution of ond,.sinc.ey> 1, it. is assumed.that the main c_:ontribution to
the electromagnetic problem since, provided the reflection® field is from high frequencies; thys>1. Third, the ma-

matricesR introduced in Eq.8) are known, the unknown
amplitudes are determined by inverting the matix

V. EFFECT ON THE MOVING CHARGE

With the electromagnetic problem solved, it is possible to

trices that couple the TM and TE modes vanish for the sym-
metric case, i.e.R*?=0 and R®Y=0. Consequently, the
first set of matrices introducddeg. (15)] are given by

i

_21

1
MAV=M(2—g I~ /:S_k_
0 0 0 y V2 Y

proceed toward determining the decelerating field on the

point chargg E{**9)]. For this purpose, it is sufficient to cal-
culateA,,, which according to Eqg13) and(17) reads

1 —x ]
ME9== 5 X4 L
0 % 2 ,y2
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whereas the second set reads Case 1
In the absence of reflections, i.&(=0,
—jer X jer X
MP=—24+2, MP=—F+% q 4 (= 1 q
2 Mo 2 __a 2 f =t _ «
7\/§ y\/g_ & A4meR% 7 o d"’1+52 41reoR? 2, (22
MP=MPZY=0. which is identical to the result reported in RET].
For the zero harmonic, the source term of the TE mode is Case 2

1 _ .
;er(()é)Sf) '=0. Correspondingly, the source of th? TM mode  Another insight is disclosed by defining the normalized
is S5 = (1) [To(x0)/To(x) ]=1/x- T?lel)se results w(r;g)ly that i hedance a&,,=(1+R)/(1— R1Y). It allows formula-
two of the N matrices are zeroN*~=0 and N**“=0, (o of the decelerating field in terms of the impedance ex-

whereas the other two read perienced by the wave propagating outward, namely,
1 —x j (1 =x, i 2 (o 7
N<12):;\/:E_7+(;\/§—E+7 R, guz—q zx—f do———= a S X2.
4meoR™ mJl-=  1+jwz, 4meoR
. . (23
(21)_ Jsr 1 Jsr (ll) . . .
N = — —— + §X+ —+ 5 X R™Y. If this impedance happens to be frequency independent and
7\/‘;— 7\/‘;— has zero imaginary component, the deceleration field is in-

dependent of its exact value. However, the situation is dif-
Since the source term of the TE mode is ze8)=0, and  ferent when the impedance has resonances.
there is no coupling between TE and TM modes in the sym-

metric case, the former vanisheg (=0)—as one may ex- Case 3
pect. As a result, the amplitude of the TM mode is deter- | order to account for the effect of reflections, consider a
mined by perfect reflector that imposes,(r = Re,>R)=0, for which

o the reflection coefficient is
C :[N(Zl)]—l (2)
om NG S HZ(ARe) HY(AR)

R =— 753 ©) =
HO (ARext) HO (AR)

_e2jwor (24)

= _ji+lx+ ji+_x
ye 27 \yfe 2

thus, after definingo=2%yy\ele,=Q\/el2¢,, the effect of
the reflection process is revealed in the explicit expressio
for the decelerating field,

_1l.
X!

) R

wherein for the expression in the right-hand side it is tacitly
assumed thad R>1 andér=2¢,(Rq— R)/R; this last pa-
rameter represents the normalized distance where reflections
Beeur. In Appendix B it is demonstrated that, regardless of
the value ofSR, the decelerating field on the point charge is
identical to the case when no reflection occurs—i.e., Eq.
~q EJ“ 4o 1+ R (w) (22). In other words, a(Cerenkoy wave emitted by the
T AmeR2 ) o P14 jo—(1—jo)R D (w) charge and being reflected by the discontinuity reaches the
(20) axis after the point charge has passed there and, as a result,
the bunch is not affected by the discontinuétyr = Rey;.

It warrants mention that ify>1 is not satisfied then

Case 4
-9 2 (= i 1+ R (w) It is a well known fact that perfect reflection from this
”_47780R7 T “’K+j5_(,<* —jo) R (w)’ “ideal wall” leads to an infinite number of modd$]. Ac-

(21) cordingly, it is possible to account for the effects of a struc-

ture that supports aingle modeas in the case of a highly

: — i@ 2) _ symmetric photonic band gap structure, by “filtering” out all
wherein «(w) JHI (2e0)/Hy (20 0). After the gen the modes except one. Based on this metallic wall model,

Erasl‘ E‘ggn;rl%tl(olg) f(zrr] eﬂ::; drzgzilg:]ait:]ng fgg) grs(;{)e ?Semgd Ir]this filtering process may be understood in terms of having a
as. ' P q wall made of a frequency-dependent metal. The reflection

next most important result of this study. Its importance is a oefficient in this case mav be assumed to be aiven b
direct consequence of the possibility of establishing the wak$(11)~ o ad g y
in a structure based on a prior calculation of the reflectiont = P(@)e wherein

coefficientf R*Y]. This calculation can be either numerical,

e.g., based oAFssor MAFIA, or analytic, on which we shall p(®)=po

H (2 2
focus in what follows. 1+ e (20g/dw)

e—[(a— 50)/5w]2+ e—[(mao)/aw]?

. (29
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FIG. 2. The normalized decel-
erating field§,(a/4meqR?) ™1, as
a function of the normalized dis-
tance where reflections occusr
=2¢&,(Rexi— R)/R (left column).
In the right column, the same
quantity is plotted as a function
of normalized frequency o

=(wg/c)R(1/2e,)Ve,—1; Jw

=(Aw/c)R(1/2¢,) Ve, —1 is the
bandwidth of the reflection.

.0

30 35 40 45 50
M.R_l_ -]
c 2, °

p(w) being a real defined function whose maximum value is(po), (i) the normalized resonance frequency of the
po, Which occurs ajw|=wy, and the width of the peak reflecting wall [wo=(wo/c)RVe,—1(1/2,)], (i) the

being dw. Further assuming thai(w) is relatively narrow,

i.e., wp>dw, we get

b= 41reoR?

4 (wy+3d0
R

X

o

1+ RUAD

wp— 30w

1+jo—(1—jo)R™  1+]

] ; (26)

reflection bandwidth of the structure [dw
=(Awg/c)Rye,—1(1/2,)], and (iv) the normalized dis-
tance where the reflection occurér =[ (Re— R)/R]2¢,}.

All three frames in the left column show that the effect of
reflections(from r =Rg,,) on the point charge diminishes as
the separation parameter increases. In fact, all three
frames demonstrate that the normalized fidietays expo-
nentially to its asymptotic valu¢see Eq(21)] as a function

of this parameter. This may be understood in terms of the

note that the integration iS ||m|ted to SiX timeS the bandW|dtht|me |t takes the photon em”:ted by the point Charge to reach
of the reflection coefficient because of the exponential decayne reflecting surface. The further away this surface is, the
associated with it. This integral can be evaluated numericallyower the probability becomes that the reflected photon acts
(Fig. 2), illustrating the dependence of the normalized decelpack on the particle. A similar, but not as pronounced, be-
erating field[ £,=&,/(q/4meR?)] on the four main param- havior is revealed by the frames in the right column which
eters of the model(i) the maximum reflection coefficient illustrate the normalized field as a function of normalized
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resonant frequencyely) of the reflecting structure. In other If the structure supports an infinite number of modes, then a
words, for most practical cases iR{,— R)/R=2/¢, the de-  point charge injected in the system excitelmscrete spec-
celerating field(and thus the wakeis independeniof the  trum of angular frequenciesof). The wake trailing behind
geometric or electric properties of the reflecting structure andhe bunchon axisis then given by

is given by &= (q/4meyR?) x2—as already indicated in

case 3.

Focusing next on frame®) and(b), we observe that the @
bandwidth of the reflecting structure has a very strong impact E(n)= Lz X Y, asCoq wsT), (29)
if or is relatively small. When the bandwidth is much AmegR® =1

smaller than the resonant frequen@y in normalized units

dw<<wy), then the point charge may experience a decelerat-
ing field that is 10% larger than in the absence of reflections, _ 27l 0, o i
Regardless of the value of the bandwidth, for sufficientlyy\/hetr;]E :Ys (2;11/2'77) fo ];(tt)hcoi@f{t) _ tacllctly assumh
large 6r and w, the decelerating field decays to its ltng a wlTOd . ?hany eveln, the ]Lr?he%e.n.reqluencyf. ?ds
asymptotic value; in all these casges= 1. Framesgc) and(d) 0 correspond to the wavelength of the driving laser Tieid,

reveal the oscillatory as well as the decaying character of thg10reover, the d|ele<;tr|c material making up the optical ac-
decelerating field; for most practical purposes, the contribuf:(aler‘.”1t|0n structure is frequency dependent and therefore, in
' ' ractice, only a few modes are supported. Consequently, of

tion seems to be limited to less than 10%. This conclusion i€ ¢ . : ) .
valid also whendr is a parameter, except if the latter is particular Interest Is th_e case w_hen only et modeis
relatively small[ (Rey— R)/R<1/2¢,], in which case the de- supported, implying a field on axis of

celerating field may be larger by more than 15% compared to

the asymptotic value.

Frames(e) and (f) reveal the impact of the reflection co- £(7)= q , XE 2(MR)(mler) Ve, —1
efficient on the decelerating field. It is evident tipgthas no 4meoR™ T 1+ [(NMR)(mle,) Ve —1]?
effect on the oscillation’s frequency but it affects its ampli-
tude quite significantly. The maximum effect occurs when xeos( 277(:_7). (30)
the reflection coefficient is unity; however, there is a signifi- N

cant effect even if there is only partial reflection. In other

words, even if the structure does not support the propagation

of a mode synchronous with a relativistic particle, there is dt may be readily checked that the amplitude has a maximum
non-negligible effect of the reflecting structure on a movingif (AN/R)(7/e,) Ve, —1=1, further implying

point charge. For the parameters presented héte=0.5

and wy=3 or ér=3) the variation is less than 2%.

£ 7)= 2 a 5 Ecos( 2770—7). (31)
Case 5 meoRe ™ A
Another topic that needs to be addressed is the impact of
the wake generated by a single bunch on trailing bunchesgnoring the asymmetric character of a photonic band gap
For this purpose one needs to go back to®@) and rewrite  structure, this last analytic result gives a reasonable estimate
it including the corresponding delay term, namely, of the wake trailing behind the point charge in any photonic
band gap structure that is uniform in thelirection.

g”(T:t_Z/U)
R(1D Case 6
2 (= 1+R — . .
= LZ_J' o i (a)(u) glemmno As already indicated, the importance of HGO) stems
AmegRe 7)o 1tjo—(1-jo)R(w) from its ability to harness numerical calculations using e.m.

(27) software packages such asssor MAFIA to determineR(*?

and evaluate the wake of complex structures. In order to
demonstrate this feature, we shall consider the reflection co-

. o . efficient[ R*Y] of a hollow fiber based on a Bragg structure
wherein 7o=(R/c)(1/2¢,) Ve, — 1. As before, it is straight- analyzed in detail elsewhere. Its absolute value is presented

forward to evaluate the wake in the absence of reflectiony, Fig. 3 as a function of thénormalized frequency for 50

(RD=0), and it read$9] interchanging dielectric layers(=2.1,s,=4) and an inter-
nal radius that is half the wavelength of the accelerating
0, <0, mode R=0.5\y). Although for a large fraction of the spec-
trum waves are transmitted through the Bragg structure,
&(r)= WXf(T)E WX 2, =0, there are narrow sections where almost complete reflection
4e 770, >0, occurs, the width of these regions being inversely propor-

(28  tional to the number of layers of the Bragg structure.
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FIG. 3. Absolute value of reflection coefficient as a function of
the normalized frequency/ wg.

FIG. 4. Normalized power generated by a trainMft 1 mi-
crobunches: exact calculation fod=10, 20, 30, 40; hereR,
:0.37\0, 8|:2.1,8||:4.0.

Consider now a macrobunch consisting\dfuniform mi-
crobunches of widthy (<27) and separated by one wave-
length (\). Based on Eq(27), it may be readily shown that
the electromagnetic power generated by such a macrobunch
is given by

m,0’

RE-RO-RE S ofofof, @9

where O, 0 and O® are three operators that depend
on the matricedN. The effect of reflections due to nonsym-
metric modes that couple through the structure is not ex-
pected to be significantly different from the one discussed

(320  above for the zero harmonic. Obviously, the effective loca-
tion of the reflection ér) may be different, and so is the
resonant frequency,) of the maximum reflection structure
(po) as well as its bandwidtliéw). Clearly, the reflection
coefficient RV for complex structures can be calculated

where sinck) =sin)/x, andwy=2m(R/\o) e — 1/(2¢). based only on numerical methods and/or commercially avail-

A numerical evaluation of Eq:32) is presented in Fig. 4 able software packages. With it, the decelerating field, or the

for Bragg structures of several numbers of laydg=10, power, can be readily evaluated using E20) or Eq. (32),

20, 30, and 40. It shows that in case of better confinemerfespectively.

(larger Np) the normalized emitted power is more moder-

ately dependent on the number of bunches. Here is the place

to mention that the frequency integral was performed up to

w=50wg, since if A\g=1um then at wavelengths shorter | conclusion, a general approach was developed enabling
than 30 nm the dielectric properties of the material are,s to estimate the impact of a dielectric structure that is uni-
strongly dependent on the frequency, and for all practicaform in the direction parallel to the moving charge and has
purposes it becomes transparent—in other words, the contijrtyally arbitrary characteristics in the transverse directions.
bution to the decelerating field virtually vanishes. A quasianalytic expression that relates the decelerating force
to the first dielectric layer, the radius of the vacuum tunnel
where the charge moves, and the reflection characteristics of
the structure has been developed. The simulation results in-
Before we conclude, a comment on nonsymmetric strucelicate that, if the effective location where the reflection oc-
tures is appropriate. If the point charge is on axis and theurs in the dielectric is sufficiently apart from the edge of the
structure isnonsymmetricthe decelerating force is expected vacuum tunnel, it has no effect on the point charge. In fact,
to have a form similar to Eq20) or Eq.(21). The reflection the decelerating field converges exponentially to its
coefficient includes not only the reflection coefficidtft?)  asymptotic value set by the first layer of dielectric material.
that couples between outgoing and incoming zero harmonic&n analytic estimatéEq. (31)] of the trailing wake has been
of the TM mode, but also coupling from the zero harmonic toprovided for the case when the electromagnetic structure
nonzero harmonics and back to the zero harmonic, i.e.,  (e.g., photonic band gasupports only one mode.

_ —vQ? ZJM q 1+Rpy(w)
T 4meRP W ). wK-I-jE-(K*—ja)Rll(a)

e a o\ siné[ M (wlwy)]
xsin (‘ ) sin@[m(alag)]

2 wo

VIl. SUMMARY

Case 7
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APPENDIX A (A1)
The azimuthal components of the secondary field in theéDutside the vacuum tunnet £R), the azimuthal field com-
vacuum tunnel (<R) are given by ponents are
E, q'“O wo(t—2/v) n(é—do)
H(S) = do e‘ 2 e’ 0
¢
o N [CH2(AN) + D HO(AN T+ EH(Ar) + F A (AT)
(vB)* | [(wlc)r]Be o m
(A2)
Aer [ B H(Ar)+EHO(AN]+ CoH P (Ar) + DA (Ar)]
ro(¥B)’e |[(wlc)r]Be,
|
APPENDIX B the z direction, whereas the wave impedance in the medium

may be shown to be given b¥,= ngJe,—1/e, with v
The wake generated by a point charge on the axis of the=-1,2. Hence
structure is given by

Q [2 (= evr
ET e szd_ =07 RZ_f b e
”(7)_4’7780R2 ) TEo 7 Jo
1-|-pe_2j“’_7A
[1-R™ (o) /[1+RD(w)]+jo ' 1-p(l-jw)/(1+jw)e A

(B1)
whereinty=(A/R)2e andp=(Z,—Z,)/(Z,+Z;), which is
. _ frequency independent. With this observation and employing
where 7= (t—2/c)(c/R)(2&)/Je—1. In the denominator, the explicit expression for a geometric series, we have
we identify the effective(normalized impedance of the
wave Z;,=(1+R®)/(1—RAY). To demonstrate our state-
ment in the context of Eq20), it is convenient to assume a _ Q
single discontinuity at a distance\ =R.,—R from the E(n)= 47780Rz
vacuum-dielectric interface, and the main contribution to the
integral is from wavelengths smaller than the internal radius (1-jw)"
. E _ d ejw(f 2nTA)

of the structure. Thus, for the transverse impedance we adopt p (1+jw)"*?
a transmission line model

* 2 (= o o (1_1—)n+1
+ n+l_f —alo[7=2(n+1)7,] -
2, 0" dwe EEsTyt

= ZylZy+jtarf(wlc)AVe;—1] 82) (B4)

1+ j(Zy 1z )tar (wlc) A — 1]

enabling us to determine an analytic expression for the inte-
representing a wave that propagates at a velacitg along  grals from the above:
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2 (* . (1-jo)" Q (- 1>”
— w(7—2m7
G(B_;J:wd“’ej ( mA)—(l—Fja)”Hl E(?j—4 RZX 42 p"h(7=2n7y) ——
(=pm2(d™ (= _ o(r—2mm, (1-jo)™ n R
T _mJ,wdw glw(r—2m A)W x| e (L)
a=1
(_1)m [ f * n+1
= 4 do e] w(r— 2m7'A) . . _ 1)
| n+1 . s
m 7| da" 2m7j +4n§=‘,0p h[7=2(n+ V7] g
1_ m
( ) ] ) (BS) " —a[7—2(n+1)7,] n+1
o—ja ac1 X ga1e al(1+a) .
a=1
The integral in the curly brackets can be evaluated using (B7)
Cauchy’s residue theorem, definifig=7—2mr, ,
o o i m
Fn(6m)= zif dwel®f (1_ J.E) The Heaviside step functions in this expression clearly reveal
7T ) —w w—ja

that the first contribution of thdiscontinuityon the moving
=e ¥ m(1+a)™h(6,,), (B6) point charge occurs yvith a dela_yzx(c) Ve - 1; therefore, at
7=0, the decelerating field is determined only by the
whereinh(x) is the Heaviside step function. Consequently, vacuum-dielectric discontinuity.
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